DESIGN, AUTOMATION & TEST IN EUROPE

01 – 05 February 2021 · virtual conference

The European Event for Electronic System Design & Test

AVRNTRU: Lightweight NTRU-Based Post-Quantum Cryptography for 8-bit AVR Microcontrollers

Hao Cheng Johann Großschädl Peter B. Rønne Peter Y. A. Ryan

University of Luxembourg

8-bit AVR Devices

Memsic Iris Sensor Node

- 8-bit ATmega1281 microcontroller
- 8 kB RAM, 128 kB flash memory

8-bit AVR Architecture

- 8-bit RISC, 133 instructions
- 32 general-purpose registers
- Most arithmetic/logic instructions 1 cycle
- RAM accessing and mul instructions 2 cycles

Atmel®

NTRUEncrypt Timeline

[SXY18] T. Saito, K. Xagawa, and T. Yamakawa, "Tightly-Secure Key-Encapsulation Mechanism in the Quantum Random Oracle Model.", in Annual International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2018.

Our Contribution

• AVRNTRU: NTRUEncrypt for 8-bit AVR microcontrollers

- Compliant with EESS #1 version 3.1 (Sept. 2015)
- Supports product-form parameter sets with SHA-256, e.g. EES443EP1 (128-bit) and EES743EP1 (256-bit)
- Scalable: change parameter set w/o re-compilation
- Resistance against timing attacks

• Ring arithmetic (multiplication r(x) = u(x) * v(x))

- Product-form polynomials
- "Hybrid" multiplication method from CHES 2004 [GPW+04]
- Record-setting execution time

Ring Multiplication
$$r(x) = u(x) * v(x)$$

Underlying ring of NTRUEncrypt

- Truncated polynomial ring $R = Z_q[x]/(x^N 1)$
- Typical instantiation (128-bit): N = 443, $q = 2^{11} = 2048$

Polynomial multiplication with reductions

- Operand u(x) is ring element; v(x) is a ternary polynomial
- Polynomial-level reduction: modulo the quotient polynomial $x^N 1$ to get result of degree N 1 (operands u(x) and v(x) of degree N 1; product has degree 2N 2)
- Coefficient-level reduction: modulo the modulus q (bitwise logical AND)

Ring Multiplication
$$r(x) = u(x) * v(x)$$

Implementation options

- Operand scanning, product scanning $O(N^2)$
- Karatsuba $O(N^{\log_2 3})$, Toom-Cook $O(N^{1.46})$

• Our approach

- Based on product-form polynomial $O(N^{1.5})$
- Was first proposed in [HS01]

Product-Form Multiplication

Product-form polynomials

- $v(x) = v_1(x) * v_2(x) + v_3(x)$
- $v_1(x)$, $v_2(x)$ and $v_3(x)$ can be sparse (i.e. have few non-0 coefficients) since coefficients cross-multiply
- Non-0 indices stored instead of coefficients for each $v_i(x)$

Ring Multiplication

- $r(x) = u(x) * v(x) = u(x) * v_1(x) * v_2(x) + u(x) * v_3(x)$
- Consists of three sparse multiplications $u(x) * v_i(x)$

Outline of Our Ring Multiplication

Ring Multiplicationr(x) = u(x) * v(x)Product-form Multiplication $r(x) = u(x) * v_1(x) * v_2(x) + u(x) * v_3(x)$ \swarrow \checkmark Sparse Multiplications $u(x) * v_1(x)$ $u(x) * v_1(x)$ $u'(x) * v_2(x)$

 $u'(x) = u(x) * v_1(x)$

Product-Form Multiplication

- Sparse multiplicaton $w(x) = u(x) * v_i(x)$
 - $v_i(x)$ is sparse ternary polyomial, i.e. each coefficient is in $\{-1, 0, 1\}$
 - Contains only the addition and subtraction of coeffcients (each addition or subtraction instruction takes 1 clock cycle; while each multiplication instruction takes 2 clock cycles on AVR)
 - Execution time depends on the number of non-0 coeffcients of $v_i(x)$

Problem: Timing Attacks

"The use of product-form parameter sets was originally intended to provide improved performance by allowing a specialized multiplication algorithm that used knowledge of the indices of the non-zero coefficients [...]. However, this index-based multiplication proves to be *very hard to implement in a constant-time fashion without losing the speed benefits*, so in this paper we concentrate on other approaches of multiplication."

- [DWZ18] states sparse multiplication is hard to implement in constanttime without losing the speed benefits.
- The straightforward implementation of sparse multiplication is vulnerable to timing attacks.

6

Towards Timing-Attack Resistance

Sources of timing leakage

- Calculation of indices (i.e. pointer arithmetic) for accessing the coeffcients u_i of polynomial u(x)
- Data-dependent RAM accesses (cache hits/misses)

Constant-time implementation

- No cache in AVR Microcontrollers
- Remove conditional statements (e.g. if-else branches)

Outline of Our Ring Multiplication

Ring Multiplication	r(x) = u(x) * v(x)				
		\checkmark			
Product-form Multiplication	n $r(x) = u(x) * v_1(x) * v_2(x) + u(x) * v_3(x)$				
	Ľ	\checkmark	Ы		
Sparse Multiplications	$u(x) * v_1(x)$	$u'(x) * v_2(x)$	$u(x) * v_3(x)$		

Sparse Multiplication (Product Scanning)

- Each coefficient addition/subtraction
 z += u[k], z -= u[k] (incl. required load and store instructions) costs 10 clock cycles
- Each address correction index[j] = k+1-(INTMASK(k+1>=N)&N) costs 13 clock cycles

```
#define INTMASK(x) (((x) - 1))
 3 void mul_tern_sparse(uint16_t *w, const uint16_t *u, const
      uint16_t *v, int vlen, int N)
4 {
    int index[vlen], i, j, k;
    register uint16_t z;
    for (i = 0; i < vlen; i ++)
      index[i] = INTMASK(v[i] != 0) \& (N - v[i]);
    for (i = 0; i < N; i++) {</pre>
      z = w[i];
12
      for (j = 0; j < vlen/2; j ++) {</pre>
        k = index[j];
        z += u[k];
15
        index[j] = k + 1 - (INTMASK(k + 1 >= N) \& N);
16
      }
17
      for (j = vlen/2; j < vlen; j ++) {</pre>
18
        k = index[j];
19
        z = u[k]:
20
        index[j] = k + 1 - (INTMASK(k + 1 >= N) \& N);
21
      7
22
      w[i] = z;
23
24
25 }
```

Sparse Multiplication (Product Scanning)

- Each coefficient addition/subtraction
 z += u[k], z -= u[k] (incl. required load and store instructions) costs 10 clock cycles
- Each address correction index[j] = k+1-(INTMASK(k+1>=N)&N) costs 13 clock cycles
- Our idea: reduce address corrections!

```
#define INTMASK(x) (((x) - 1))
 void mul_tern_sparse(uint16_t *w, const uint16_t *u, const
      uint16_t *v, int vlen, int N)
4 {
    int index[vlen], i, j, k;
    register uint16_t z;
    for (i = 0; i < vlen; i ++)
      index[i] = INTMASK(v[i] != 0) \& (N - v[i]);
    for (i = 0; i < N; i++) {</pre>
      z = w[i];
12
      for (j = 0; j < vlen/2; j ++) {</pre>
        k = index[j];
        z += u[k];
        index[j] = k + 1 - (INTMASK(k + 1 >= N) \& N);
      }
      for (j = vlen/2; j < vlen; j ++) {</pre>
18
        k = index[j];
19
        z = u[k]:
20
        index[j] = k + 1 - (INTMASK(k + 1 >= N) \& N);
21
      7
22
      w[i] = z;
23
24
25 }
```

Our Sparse Multiplication (Hybrid Method)

- Hybrid multiplication method from CHES 2004 [GPW+04]
- Perform 8 coefficient additions or subtractions in each iteration (of inner loops)

```
#define INTMASK(x) (((x) - 1))
 void mul_tern_sparse(uint16_t *w, const uint16_t *u, const
     uint16_t *v, int vlen, int N)
4 {
    int index[vlen], i, j, k;
   register uint16_t w0, w1, w2, w3, w4, w5, w6, w7;
   for (i = 0; i < vlen; i ++)</pre>
      index[i] = INTMASK(v[i] != 0) & (N - v[i]);
   for (i = 0; i < N; i += 8) {
     w0 = w[i]; w1 = w[i+1]; w2 = w[i+2]; w3 = w[i+3];
     w4 = w[i+4]; w5 = w[i+5]; w6 = w[i+6]; w7 = w[i+7];
     for (j = 0; j < vlen/2; j ++) {</pre>
        k = index[j];
15
       w0 += u[k]; w1 += u[k+1]; w2 += u[k+2]; w3 += u[k+3];
16
       w4 += u[k+4]; w5 += u[k+5]; w6 += u[k+6]; w7 += u[k+7];
17
       index[j] = k + 8 - (INTMASK(k + 8 >= N) \& N);
18
     3
19
      for (j = vlen/2; j < vlen; j ++) {</pre>
20
        k = index[i];
^{21}
       w0 = u[k]; w1 = u[k+1]; w2 = u[k+2]; w3 = u[k+3];
22
       w4 -= u[k+4]; w5 -= u[k+5]; w6 -= u[k+6]; w7 -= u[k+7];
23
        index[j] = k + 8 - (INTMASK(k + 8 >= N) \& N);
24
25
     w[i] = w0; w[i+1] = w1; w[i+2] = w2; w[i+3] = w3;
26
     w[i+4] = w4; w[i+5] = w5; w[i+6] = w6; w[i+7] = w7;
27
28
29 }
```

[GPW+04] N. Gura, A. Patel, A. S. Wander, H. Eberle, and S. Chang Shantz, "Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs", in *Cryptographic Hardware and Embedded Systems (CHES)*, 2004.

Outline of Our Ring Multiplication

Ring Multiplicationr(x) = u(x) * v(x)Product-form Multiplication $r(x) = u(x) * v_1(x) * v_2(x) + u(x) * v_3(x)$ Sparse Multiplications $u(x) * v_1(x)$ $u(x) * v_1(x)$ $u'(x) * v_2(x)$ Hybrid Method $u'(x) * v_2(x)$

 $u'(x) = u(x) * v_1(x)$

Auxiliary Functions

Performance depends on SHA-256

- Index Generation Function (IGF)
- Blinding Polynomial Generation Method (BPGM)
- Mask Generation Function (MGF)

Optimization for SHA-256

- Adopt the techniques in [CDG19]

[CDG19] H. Cheng, D. Dinu, and Johann Großschädl, "Efficient Implementation of the SHA-512 Hash Function for 8-bit AVR Microcontrollers", in *Innovative* Security Solutions for Information Technology and Communications, 2019.

Timings on 8-bit ATmega1281 (clock cycles)

Operation	EES443EP1(128-bit)	EES743EP1(256-bit)	
Ring Multiplication	192,577	519,746	
Encryption	847,973	1,550,538	
Decryption	1,051,871	2,080,078	

- For comparison, optimized multi-level Karatsuba ring mul 1.1 M clock cycles
- Our ring mul 5.7x faster, only 22.7% 33.5 % of total encryption time
- Auxiliary functions (SHA-256) dominate execution time
- Code size: 8.9 kB (incl. two parameter sets)
- RAM footprint: 2.9 kB (128-bit Enc) 6.4 kB (256-bit Dec)

Comparison

Implementation	Algorithm	Security	Platform	Encryption	Decryption
This work	NTRU	128-bit	ATmega1281	847,973	1,051,871
This work	NTRU	256-bit	ATmega1281	1,550,538	2,080,078
[BBJ15]	NTRU	128-bit	ATmega64	1,390,713	2,008,678
[GPB+17]	NTRU	128-bit	Cortex-M0	588,044	950,371
[GPB+17]	NTRU	256-bit	Cortex-M0	1,411,557	2,377,054

- 1.6x faster compared to the state of the art on AVR
- A bit slower than ARM Cortex-M0 implementations

Comparison

Implementation	Algorithm	Security	Platform	Encryption	Decryption
This work	NTRU	128-bit	ATmega1281	847,973	1,051,871
This work	NTRU	256-bit	ATmega1281	1,550,538	2,080,078
[GPW+04]	RSA	80-bit	ATmega128	3,440,000	87,920,000
[DHH+15]	ECC	128-bit	ATmega2560	13,900,397	13,900,397
[LPO+17]	RLWE	128-bit	ATxmega128	796,872	215,031
[LPO+17]	RLWE	256-bit	ATxmega128	1,975,806	553,536

- Outperforms the scalar multiplication on Curve25519 over an order of magnitude
- AVRNTRU is faster than RLWE when only ring arithmetic is considered

Concluding Remarks

- Product-form parameters are useful in practice
- A new speed record for the arithmetic part of a lattice-based cryptosystem on an 8-bit device
- AVRNTRU achieves fastest execution time of all known NTRUEncrypt software implementations for AVR
- AVRNTRU is well suited for deployment on resource-limited devices in the post-quantum era

Thank you for your attention !