
Hao Cheng Johann Großschädl Peter B. Rønne Peter Y. A. Ryan

University of Luxembourg

AVRNTRU: Lightweight NTRU-Based Post-Quantum
Cryptography for 8-bit AVR Microcontrollers

8-bit AVR Devices

1

•Memsic Iris Sensor Node
- 8-bit ATmega1281 microcontroller
- 8 kB RAM, 128 kB flash memory

• 8-bit AVR Architecture
- 8-bit RISC, 133 instructions
- 32 general-purpose registers
- Most arithmetic/logic instructions 1 cycle
- RAM accessing and mul instructions 2 cycles

NTRUEncrypt Timeline

2

1996

NTRU (PKE) was invented by
Hoffstein, Pipher, and
Silverman.

2003

Efficient Embedded Security
Standards (EESS) #1 Version
2.0, PKE

2015

EESS #1 Version 3.1, PKE
(currently used in the industry,
e.g. wolfSSL)

Our target version

2017

NTRUEncrypt is a 1st round
candidate in NIST PQC.
(EESS #1 Version 3.3, PKE and
KEM)

2019

NTRU is a 2nd round candidate
in NIST PQC, KEM.
(Merger of NTRUEncrypt and
NTRU-HRSS, based on the
Saito-Xagawa-Yamakawa
variant of NTRU-HRSS [SXY18])

2020

NTRU is a finalist in the NIST
PQC 3rd round.

[SXY18] T. Saito, K. Xagawa, and T. Yamakawa, “Tightly-Secure Key-Encapsulation Mechanism in the Quantum Random Oracle Model.”, in Annual
International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT), 2018.

• AVRNTRU: NTRUEncrypt for 8-bit AVR microcontrollers
- Compliant with EESS #1 version 3.1 (Sept. 2015)
- Supports product-form parameter sets with SHA-256, e.g. EES443EP1 (128-bit) and

EES743EP1 (256-bit)
- Scalable: change parameter set w/o re-compilation

- Resistance against timing attacks

• Ring arithmetic (multiplication 𝒓(𝒙) = 𝒖(𝒙) ∗ 𝒗 𝒙)
- Product-form polynomials

- “Hybrid” multiplication method from CHES 2004 [GPW+04]

- Record-setting execution time

Our Contribution

3

• Underlying ring of NTRUEncrypt
- Truncated polynomial ring 𝑅 = 𝑍! 𝑥 /(𝑥" − 1)

- Typical instantiation (128-bit): 𝑁 = 443, 𝑞 = 2## = 2048

• Polynomial multiplication with reductions
- Operand 𝑢(𝑥) is ring element; 𝑣(𝑥) is a ternary polynomial

- Polynomial-level reduction: modulo the quotient polynomial 𝑥" − 1 to get
result of degree 𝑁 − 1 (operands 𝑢(𝑥) and 𝑣(𝑥) of degree 𝑁 − 1; product has degree 2𝑁 − 2)

- Coefficient-level reduction: modulo the modulus 𝑞 (bitwise logical AND)

Ring Multiplication 𝒓(𝒙) = 𝒖(𝒙) ∗ 𝒗(𝒙)

4

• Implementation options
- Operand scanning, product scanning 𝑂(𝑁!)

- Karatsuba 𝑂(𝑁"#$! %), Toom-Cook 𝑂(𝑁&.())

• Our approach
- Based on product-form polynomial 𝑂(𝑁&.*)
- Was first proposed in [HS01]

Ring Multiplication 𝒓(𝒙) = 𝒖(𝒙) ∗ 𝒗(𝒙)

4
[HS01] J. Hoffstein and J. H. Silverman, “Optimizations for NTRU”, in Public-Key Cryptography and Computational Number Theory, 2001.

• Product-form polynomials
- 𝑣 𝑥 = 𝑣# 𝑥 ∗ 𝑣- 𝑥 + 𝑣.(𝑥)

- 𝑣# 𝑥 , 𝑣- 𝑥 and 𝑣.(𝑥) can be sparse (i.e. have few non-0 coefficients) since
coefficients cross-multiply

- Non-0 indices stored instead of coefficients for each 𝑣/ 𝑥

• Ring Multiplication

- 𝑟 𝑥 = 𝑢 𝑥 ∗ 𝑣 𝑥 = 𝑢 𝑥 ∗ 𝑣# 𝑥 ∗ 𝑣- 𝑥 + 𝑢 𝑥 ∗ 𝑣.(𝑥)

- Consists of three sparse multiplications 𝑢 𝑥 ∗ 𝑣/ 𝑥

Product-Form Multiplication

5

Outline of Our Ring Multiplication

5

𝑢 𝑥 ∗ 𝑣&(𝑥) 𝑢′ 𝑥 ∗ 𝑣!(𝑥) 𝑢 𝑥 ∗ 𝑣%(𝑥)

𝑟 𝑥 = 𝑢 𝑥 ∗ 𝑣(𝑥)
↓

𝑟 𝑥 = 𝑢 𝑥 ∗ 𝑣& 𝑥 ∗ 𝑣! 𝑥 + 𝑢 𝑥 ∗ 𝑣%(𝑥)

Ring Multiplication

Product-form Multiplication

Sparse Multiplications
↓↙ ↘

𝑢!(𝑥) = 𝑢(𝑥) ∗ 𝑣"(𝑥)

• Sparse multiplicaton 𝒘 𝒙 = 𝒖 𝒙 ∗ 𝒗𝒊(𝒙)
- 𝑣+(𝑥) is sparse ternary polyomial, i.e. each coefficient is in −1, 0, 1
- Contains only the addition and subtraction of coeffcients (each addition or

subtraction instruction takes 1 clock cycle; while each multiplication
instruction takes 2 clock cycles on AVR)

- Execution time depends on the number of non-0 coeffcients of 𝑣+(𝑥)

Product-Form Multiplication

5

Problem: Timing Attacks

6

“The use of product-form parameter sets was originally intended to provide
improved performance by allowing a specialized multiplication algorithm
that used knowledge of the indices of the non-zero coefficients […].
However, this index-based multiplication proves to be very hard to
implement in a constant-time fashion without losing the speed benefits, so
in this paper we concentrate on other approaches of multiplication.”

• [DWZ18] states sparse multiplication is hard to implement in constant-
time without losing the speed benefits.

• The straightforward implementation of sparse multiplication is vulnerable
to timing attacks.

[DWZ18] W. Dai, W. Whyte, and Z. Zhang, “Optimizing Polynomial Convolution for NTRUEncrypt”, in IEEE Transactions on Computers, 2018.

• Sources of timing leakage
- Calculation of indices (i.e. pointer arithmetic) for

accessing the coeffcients 𝑢+ of polynomial 𝑢(𝑥)
- Data-dependent RAM accesses (cache hits/misses)

• Constant-time implementation
- No cache in AVR Microcontrollers

- Remove conditional statements (e.g. if-else branches)

Towards Timing-Attack Resistance

6

Outline of Our Ring Multiplication

7

𝑢 𝑥 ∗ 𝑣&(𝑥) 𝑢′ 𝑥 ∗ 𝑣!(𝑥) 𝑢 𝑥 ∗ 𝑣%(𝑥)

𝑟 𝑥 = 𝑢 𝑥 ∗ 𝑣(𝑥)
↓

𝑟 𝑥 = 𝑢 𝑥 ∗ 𝑣& 𝑥 ∗ 𝑣! 𝑥 + 𝑢 𝑥 ∗ 𝑣%(𝑥)

Ring Multiplication

Product-form Multiplication

Sparse Multiplications
↓↙ ↘

𝑢!(𝑥) = 𝑢(𝑥) ∗ 𝑣"(𝑥)

Sparse Multiplication (Product Scanning)

7

• Each coefficient addition/subtraction
z += u[k], z -= u[k] (incl. required load and
store instructions) costs 10 clock cycles

• Each address correction
index[j] = k+1-(INTMASK(k+1>=N)&N)
costs 13 clock cycles

Sparse Multiplication (Product Scanning)

7

• Each coefficient addition/subtraction
z += u[k], z -= u[k] (incl. required load and
store instructions) costs 10 clock cycles

• Each address correction
index[j] = k+1-(INTMASK(k+1>=N)&N)
costs 13 clock cycles

• Our idea: reduce address corrections!

Our Sparse Multiplication (Hybrid Method)

8

• Hybrid multiplication method from
CHES 2004 [GPW+04]

• Perform 8 coefficient additions or
subtractions in each iteration (of inner
loops)

[GPW+04] N. Gura, A. Patel, A. S. Wander, H. Eberle, and S. Chang Shantz, “Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs”, in Cryptographic
Hardware and Embedded Systems (CHES), 2004.

Outline of Our Ring Multiplication

8

𝑢 𝑥 ∗ 𝑣&(𝑥) 𝑢′ 𝑥 ∗ 𝑣!(𝑥) 𝑢 𝑥 ∗ 𝑣%(𝑥)

𝑟 𝑥 = 𝑢 𝑥 ∗ 𝑣(𝑥)
↓

𝑟 𝑥 = 𝑢 𝑥 ∗ 𝑣& 𝑥 ∗ 𝑣! 𝑥 + 𝑢 𝑥 ∗ 𝑣%(𝑥)

Ring Multiplication

Product-form Multiplication

Sparse Multiplications
↓↙ ↘

Hybrid Method Hybrid Method Hybrid Method

𝑢!(𝑥) = 𝑢(𝑥) ∗ 𝑣"(𝑥)

• Performance depends on SHA-256
- Index Generation Function (IGF)

- Blinding Polynomial Generation Method (BPGM)

- Mask Generation Function (MGF)

• Optimization for SHA-256
- Adopt the techniques in [CDG19]

Auxiliary Functions

9
[CDG19] H. Cheng, D. Dinu, and Johann Großschädl, “Efficient Implementation of the SHA-512 Hash Function for 8-bit AVR Microcontrollers”, in Innovative
Security Solutions for Information Technology and Communications, 2019.

Operation EES443EP1(128-bit) EES743EP1(256-bit)

Ring Multiplication 192,577 519,746

Encryption 847,973 1,550,538

Decryption 1,051,871 2,080,078

Timings on 8-bit ATmega1281 (clock cycles)

10

- For comparison, optimized multi-level Karatsuba ring mul 1.1 M clock cycles

- Our ring mul 5.7x faster, only 22.7% - 33.5 % of total encryption time

- Auxiliary functions (SHA-256) dominate execution time

- Code size: 8.9 kB (incl. two parameter sets)

- RAM footprint: 2.9 kB (128-bit Enc) – 6.4 kB (256-bit Dec)

Comparison

11

Implementation Algorithm Security Platform Encryption Decryption

This work NTRU 128-bit ATmega1281 847,973 1,051,871

This work NTRU 256-bit ATmega1281 1,550,538 2,080,078

[BBJ15] NTRU 128-bit ATmega64 1,390,713 2,008,678

[GPB+17] NTRU 128-bit Cortex-M0 588,044 950,371

[GPB+17] NTRU 256-bit Cortex-M0 1,411,557 2,377,054

- 1.6x faster compared to the state of the art on AVR

- A bit slower than ARM Cortex-M0 implementations

Implementation Algorithm Security Platform Encryption Decryption

This work NTRU 128-bit ATmega1281 847,973 1,051,871

This work NTRU 256-bit ATmega1281 1,550,538 2,080,078

[GPW+04] RSA 80-bit ATmega128 3,440,000 87,920,000

[DHH+15] ECC 128-bit ATmega2560 13,900,397 13,900,397

[LPO+17] RLWE 128-bit ATxmega128 796,872 215,031

[LPO+17] RLWE 256-bit ATxmega128 1,975,806 553,536

Comparison

11

- Outperforms the scalar multiplication on Curve25519 over an order of magnitude

- AVRNTRU is faster than RLWE when only ring arithmetic is considered

- Product-form parameters are useful in practice

- A new speed record for the arithmetic part of a lattice-based cryptosystem on
an 8-bit device

- AVRNTRU achieves fastest execution time of all known NTRUEncrypt software
implementations for AVR

- AVRNTRU is well suited for deployment on resource-limited devices in the
post-quantum era

Concluding Remarks

12

Thank you for your attention !

