High-Throughput Elliptic Curve Cryptography using AVX2 Vector Instructions

Hao Cheng Johann Großschädl Jiaqi Tian Peter B. Rønne Peter Y. A. Ryan University of Luxembourg

SAC 2020

SIMD

Single Instruction Multiple Data

1

Intel x86/x64 Vector Extensions

Intel® Advanced Vector eXtensions (AVX) series¹ (bottom two rows)

¹figure from https://www.prowesscorp.com/what-is-intel-avx-512-and-why-does-it-matter/

Properties

- \odot SIMD fashions : 8-bit \times 32 16-bit \times 16 32-bit \times 8 64-bit \times 4
- Multiplier : 32-bit

__m256i _mm256_mul_epu32 (__m256i A, __m256i B)

ECC with SIMD Acceleration

- 1) Field arithmetic ← limbs
- 3) Combination of \leftarrow 1) and 2)
- 2) Curve arithmetic \leftarrow field operations
- 4) Mixed use of 1), 2) and 3)

ECC with SIMD Acceleration

1) Field arithmetic \leftarrow limbs

3) Combination of \leftarrow 1) and 2)

2) Curve arithmetic ← field operations
4) Mixed use of 1), 2) and 3)

(Each x_i is one limb of the large integer X)

$(n \times m)$ -Way Parallelism

$(n \times m)$ -Way Parallelism

(Each x_i is one limb of the large integer X)

X25519

Key Generation

Low-Latency X25519 using AVX

Work	Authors	ISA	Impl.	Var-base scalar mul.
[Chou15]	Chou	AVX	(2×1)-way	137.2 k cycles
[FHLD19]	Faz-H., López, Dahab	AVX2	(2×2) -way	99.4 k cycles
[HEY20]	Hisil, Egrice, Yassi	AVX512	(4×2)-way	74.4 k cycles
[NS20]	Nath, Sarkar	AVX2 assembly	(4×1)-way	95.4 k cycles

Low-Latency X25519 using AVX

Work	Authors ISA Impl.		Impl.	Var-base scalar mul.	
[Chou15]	Chou	AVX	(2×1)-way	137.2 k cycles	27.6%
[FHLD19]	Faz-H., López, Dahab	AVX2	(2×2) -way	99.4 k cycles	21.070
[HEY20]	Hisil, Egrice, Yassi	AVX512	(4×2)-way	74.4 k cycles	
[NS20]	Nath, Sarkar	AVX2 assembly	(4×1)-way	95.4 k cycles	

Low-Latency X25519 using AVX

Work	Authors	ISA	Impl.	Var-base scalar mul.	
[Chou15]	Chou	AVX	(2×1) -way	137.2 k cycles	27.6%
[FHLD19]	Faz-H., López, Dahab	AVX2	(2×2) -way	99.4 k cycles	25.2%
[HEY20]	Hisil, Egrice, Yassi	AVX512	(4×2)-way	74.4 k cycles	2012/0
[NS20]	Nath, Sarkar	AVX2 assembly	(4×1)-way	95.4 k cycles	

Low-Latency X25519 using AVX

Work	Authors	ISA	Impl.	Var-base scalar mul.	
[Chou15]	Chou	AVX	(2×1) -way	137.2 k cycles	27.6%
[FHLD19]	Faz-H., López, Dahab	AVX2	(2×2) -way	99.4 k cycles	25.2%
[HEY20]	Hisil, Egrice, Yassi	AVX512	(4×2)-way	74.4 k cycles	2012/0
[NS20]	Nath, Sarkar	AVX2 assembly	(4×1) -way	95.4 k cycles	

Do not scale very well!

Throughput v.s. Latency

• How to exploit the massive parallelism of future SIMD extensions?

- How to exploit the massive parallelism of future SIMD extensions?
- Why low-latency implementations?

- How to exploit the massive parallelism of future SIMD extensions?
- Why low-latency implementations?
 - reduces the overall handshake-latency for a TLS client side

- How to exploit the massive parallelism of future SIMD extensions?
- Why low-latency implementations?
 - reduces the overall handshake-latency for a TLS client side

Computation « Transmission !

- How to exploit the massive parallelism of future SIMD extensions?
- Why low-latency implementations?
 - reduces the overall handshake-latency for a TLS client side

Computation « Transmission !

Why high-throughput implementations?

Throughput v.s. Latency

Why throughput-optimized?

TLS servers of big organizations ← several 10,000 TLS handshakes per second

- Latency 🗡
- Throughput 🗸

Throughput v.s. Latency

Why throughput-optimized?

TLS servers of big organizations ← several 10,000 TLS handshakes per second

- Latency 🗡
- Throughput 🗸

High throughput instead of low latency?

What throughput can it achieve?

This Work

- Takes first step to answer these questions
- Introduces a throughput-optimized AVX2 implementation of X25519
 - variable-base scalar multiplication on Curve25519
 - fixed-base scalar multiplication on Ed25519

Methodology – (4×1) -way scalar multiplication

Perform FOUR scalar multiplications simultaneously!

"Coarse-Grained" Parallelism

- Scalar multiplication \bigcirc
- \bigcirc
- Field arithmetic

Point arithmetic 64-bit element of 256-bit AVX2 vector

"Coarse-Grained" Parallelism

- Scalar multiplication
- o Point arithmetic
- Field arithmetic

64-bit element of 256-bit AVX2 vector

Advantages

- 1) Easy to implement
- 2) Fully exploit parallelism
- 3) Support various SIMD extensions (straightforward extension to AVX512)

Radix-2^{25.5} (e.g. [Chou15], [FHLD19])

$$f = f_0 + 2^{26} f_1 + 2^{51} f_2 + 2^{77} f_3 + 2^{102} f_4 + 2^{128} f_5 + 2^{153} f_6 + 2^{179} f_7 + 2^{204} f_8 + 2^{230} f_9$$

Radix-2^{25.5} (e.g. [Chou15], [FHLD19])

$$f = f_0 + 2^{26} f_1 + 2^{51} f_2 + 2^{77} f_3 + 2^{102} f_4 + 2^{128} f_5 + 2^{153} f_6 + 2^{179} f_7 + 2^{204} f_8 + 2^{230} f_9$$

Radix- 2^{29} (this work)

$$f = f_0 + 2^{29} f_1 + 2^{58} f_2 + 2^{87} f_3 + 2^{116} f_4 + 2^{145} f_5 + 2^{174} f_6 + 2^{203} f_7 + 2^{232} f_8$$

Radix-2^{25.5} (e.g. [Chou15], [FHLD19])

$$f = f_0 + 2^{26} f_1 + 2^{51} f_2 + 2^{77} f_3 + 2^{102} f_4 + 2^{128} f_5 + 2^{153} f_6 + 2^{179} f_7 + 2^{204} f_8 + 2^{230} f_9$$

Radix- 2^{29} (this work)

$$f = f_0 + 2^{29} f_1 + 2^{58} f_2 + 2^{87} f_3 + 2^{116} f_4 + 2^{145} f_5 + 2^{174} f_6 + 2^{203} f_7 + 2^{232} f_8$$

\odot (2 × 2)-way both use five limbs

Radix-2^{25.5} (e.g. [Chou15], [FHLD19])

$$f = f_0 + 2^{26} f_1 + 2^{51} f_2 + 2^{77} f_3 + 2^{102} f_4 + 2^{128} f_5 + 2^{153} f_6 + 2^{179} f_7 + 2^{204} f_8 + 2^{230} f_9$$

Radix- 2^{29} (this work)

$$f = f_0 + 2^{29} f_1 + 2^{58} f_2 + 2^{87} f_3 + 2^{116} f_4 + 2^{145} f_5 + 2^{174} f_6 + 2^{203} f_7 + 2^{232} f_8$$

\odot (2 × 2)-way both use five limbs

 \odot (4 × 1)-way Radix-2^{25.5} uses ten limbs Radix-2²⁹ uses nine limbs

Field Element Vector Set

$$\mathbf{A} = [e, f, g, h] = \left[\sum_{i=0}^{8} 2^{29i} e_i, \sum_{i=0}^{8} 2^{29i} f_i, \sum_{i=0}^{8} 2^{29i} g_i, \sum_{i=0}^{8} 2^{29i} h_i\right]$$
$$= \sum_{i=0}^{8} 2^{29i} [e_i, f_i, g_i, h_i] = \sum_{i=0}^{8} 2^{29i} \mathbf{a}_i \quad \text{with} \quad \mathbf{a}_i = [e_i, f_i, g_i, h_i].$$

⊙ Modulus $p = 2^6 \cdot (2^{255} - 19) \leftarrow 29$ -bit×9 = 261-bit

- ⊙ Modulus $p = 2^6 \cdot (2^{255} 19) \leftarrow 29$ -bit×9 = 261-bit
- ◎ Addition \rightarrow ordinary integer addition r = a + b

⊙ Modulus $p = 2^6 \cdot (2^{255} - 19) \leftarrow 29$ -bit×9 = 261-bit

 \bigcirc Addition → ordinary integer addition r = a + b

- Subtraction
 - ordinary subtraction r = 2p + a b
 - modular subtraction $r = 2p + a b \mod p$

⊙ Modulus $p = 2^6 \cdot (2^{255} - 19) \leftarrow 29$ -bit×9 = 261-bit

 \bigcirc Addition → ordinary integer addition r = a + b

- Subtraction
 - ordinary subtraction r = 2p + a b
 - modular subtraction $r = 2p + a b \mod p$
- \odot **Multiplication** $r = a * b \mod p$

⊙ Modulus $p = 2^6 \cdot (2^{255} - 19) \leftarrow 29$ -bit×9 = 261-bit

 \bigcirc Addition → ordinary integer addition r = a + b

- Subtraction
 - ordinary subtraction r = 2p + a b
 - modular subtraction $r = 2p + a b \mod p$
- Multiplication $r = a * b \mod p$

 \odot Squaring \rightarrow special multiplication $r = a^2 = a * a \mod p$

Design Principles

- Make full use of execution ports
- Reduce the sequential dependencies

Design Principles

- Make full use of execution ports \bigcirc
- Reduce the sequential dependencies

a dozen of candidates \rightarrow benchmark \rightarrow the lowest latency

Design Principles

- Make full use of execution ports
- Reduce the sequential dependencies

Distinctions of candidates

- 1) Reduction & multiplication → **separated** or **interleaved**?
- 2) Different carry propagation plans
- 3) Intermediate values \rightarrow local variables?

1	<pre>#include <immintrin.h></immintrin.h></pre>
2	<pre>#define ADD(X,Y) _mm256_add_epi64(X,Y) /* VPADDQ */</pre>
3	<pre>#define MUL(X,Y) _mm256_mul_epu32(X,Y) /* VPMULUDQ */</pre>
4	#define AND(X,Y) _mm256_and_si256(X,Y) /* VPAND */
5	<pre>#define SRL(X,Y) _mm256_srli_epi64(X,Y) /* VPSRLQ */</pre>
6	<pre>#define BCAST(X) _mm256_set1_epi64x(X) /* VPBROADCASTQ */</pre>
7	#define MASK29 Ox1fffffff /* mask of 29 LSBs */
8	
9	<pre>void fp_mul(m256i *r, constm256i *a, constm256i *b)</pre>
10	{
u	int i, j, k;m256i t[9], accu;
12	
13	/* 1st loop of the product-scanning multiplication */
14	for (i = 0; i < 9; i++) {
15	t[i] = BCAST(0);
16	$for(j = 0, k = i; k \ge 0; j++, k)$
17	t[i] = ADD(t[i], MUL(a[j], b[k]));
18	}
19	accu = SRL(t[8], 29);
20	t[8] = AND(t[8], BCAST(MASK29));
21	
22	/* 2nd loop of the product-scanning multiplication */
13	for (i = 9; i < 17; i++) {
24	for $(j = 1-8, k = 8; j < 9; j++, k)$
25	accu = ADD(accu, MUL(a[j], b[k]));
26	r[1-9] = AND(accu, BCAST(MASK29));
27	accu = SRL(accu, 29);
28	} [9]
20	rloj = accu;
	/* modulo reduction and conversion to 20-bit limbs */
	accu = BCAST(0):
2.9	for $(i = 0; i \leq 9; i++)$ (
14	accu = ADD(accu, MUL(r[i], BCAST(64*19))));
15	accu = ADD(accu, t[i]);
36	r[i] = AND(accu, BCAST(MASK29));
37	accu = SRL(accu, 29);
318	}
39	
10	<pre>/* limbs in r[0] can finally be 30 bits long */</pre>
11	r[0] = ADD(r[0], MUL(accu, BCAST(64*19)));
12	}

0

0 1 2 3 4 5 6 7 8

Point Arithmetic

Take advantage of two types of field subtraction !

```
void point_add(ExtPoint *R, ExtPoint *P, ProPoint *Q)
2 {
      __m256i t[9]:
     fp_mul(t, P->e, P->h); /* T = E_{\mathscr{P}} \times H_{\mathscr{P}} */
     fp_sub(R->e, P->y, P->x); /* E_{\mathscr{R}} = Y_{\mathscr{P}} - X_{\mathscr{P}} */
      fp_add(R->h, P->y, P->x); /* H_{\mathcal{Q}} = Y_{\mathcal{Q}} + X_{\mathcal{Q}} */
     fp_mul(R->x, R->e, Q->y); /* X_{\mathcal{R}} = E_{\mathcal{R}} \times Y_{\mathcal{Q}} */
     fp_mul(R->y, R->h, Q->x); /* Y_{\mathscr{R}} = H_{\mathscr{R}} \times X_{\mathscr{Q}} */
                                             /* E_{\mathcal{R}} = Y_{\mathcal{R}} - X_{\mathcal{R}} */
     fp_sub(R->e, R->v, R->x):
10
     fp_add(R->h, R->v, R->x); /* H_{\mathcal{R}} = Y_{\mathcal{R}} + X_{\mathcal{R}} */
11
     fp_mul(R->x, t, Q->z);
                                               /* X_{\mathcal{R}} = T \times Z_{\mathcal{Q}} */
     \begin{array}{ll} \mathbf{fp\_sbc(t, P->z, R->x);} & /* \ T = \mathbf{Z}_{\mathcal{P}} - \mathbf{X}_{\mathcal{R}} & */\\ \mathbf{fp\_add(R->x, P->z, R->x);} & /* \ \mathbf{X}_{\mathcal{R}} = \mathbf{Z}_{\mathcal{P}} + \mathbf{X}_{\mathcal{R}} & */\\ \end{array}
13
14
     fp_mul(R->z, t, R->x); /* Z_{\mathcal{R}} = T \times X_{\mathcal{R}} */
15
     fp_mul(R->y, R->x, R->h); /* Y_{\mathcal{R}} = X_{\mathcal{R}} \times H_{\mathcal{R}} */
16
                                               /* X_{\mathcal{R}} = E_{\mathcal{R}} \times T */
     fp_mul(R->x, R->e, t);
17
18 }
```

Measurement Environment

Platform

- a Haswell Intel® Core™ i7-4710HQ CPU clocked at 2.5 GHz
- a Skylake Intel® Core™ i5-6360U CPU clocked at 2.0 GHz

- ◎ Compiler Clang 10.0.0
- Disabled Features
 - Intel® Turbo Boost 🛛 🗡
 - Intel® Hyper-Threading ✗

Performance Evaluation

CPU cycles of (4×1) -way field and point arithmetic

Domain	Operation	[FHL	D19]	This Work		
Domain	operation	Haswell	Skylake	Haswell	Skylake	
	Addition	12	12	11	11	
	Ord. Subtraction	n/a	n/a	14	12	
$\mathbb{F}_{2^{255}-19}$	Mod. Subtraction	n/a	n/a	32	31	
	Multiplication	159	105	122	88	
	Squaring	114	85	87	65	
twisted Edwards	Point Addition	1096	833	965	705	
	Point Doubling	n/a	n/a	830	624	
curve	Table Query	208	201	218	205	
Montgomery curve Ladder Step		n/a	n/a	1118	818	

Performance Evaluation

Distingues	CPU Key Generation		neration	Shared	Table Cize	
Platform	Frequency	Latency	Throughput	Latency	Throughput	Table Size
Haswell	2.5 GHz	104,579 cycles	95,568 ops/sec	329,455 cycles	30,336 ops/sec	24 kB
Skylake	2.0 GHz	80,249 cycles	99,363 ops/sec	246,636 cycles	32,318 ops/sec	24 kB

30% stronger on Skylake than on Haswell

Comparison on Haswell – 2.5 GHz

				Key Generation		Shared Secret	
Work	Impl.	CPU	Compiler	Latency	Throughput	Latency	Throughput
				[cycles]	[ops/sec]	[cycles]	[ops/sec]
	(2×2) -way	i7-4770	Clang 5.0.2	43,700	57,208	121,000	20,661
	(2×2) -way	i7-4710HQ	Clang 10.0.0	41,938	59,575	121,499	20,563
[NS20]	(4 $ imes$ 1)-way	i7-6500U	GCC 7.3.0	100,127	24,968	120,108	20,815
	(4 $ imes$ 1)-way	i7-4710HQ	GCC 8.4.0	100,669	24,820	120,847	20,676
This work	(4 $ imes$ 1)-way	i7-4710HQ	Clang 10.0.0	104,579	95,568	329,455	30,336
					60.4%		45.7%

Comparison on Skylake – 2.0 GHz

				Key Generation		Shared Secret	
Work	Impl.	CPU	Compiler	Latency	Throughput	Latency	Throughput
				[cycles]	[ops/sec]	[cycles]	[ops/sec]
	(2×2) -way	i7-6700K	Clang 5.0.2	34,500	57,971	99,400	20,150
[FHLD19]	(2×2) -way	i5-6360U	Clang 10.0.0	35,629	55,955	95,129	20,939
EUEV201	(4 × 1)-way	i9-7900X	GCC 5.4	n/a	n/a	98,484	20,308
	(4 $ imes$ 1)-way	i5-6360U	GCC 8.4.0	n/a	n/a	116,595	16,656
[NIC20]	(4 $ imes$ 1)-way	i7-6500U	GCC 7.3.0	84,047	23,796	95,437	20,956
[11520]	(4 $ imes$ 1)-way	i5-6360U	GCC 8.4.0	82,054	24,406	93,657	21,168
This work	(4 × 1)-way	i5-6360U	Clang 10.0.0	80,249	99,363	246,636	32,318
					71.4%		52.7%

- ◎ AVX2 offers great potential to optimize ECC
- ◎ The first to use AVX2 to maximize throughput
- \odot 1.5x ~ 1.7x throughput compared to the state of the art
- Straightforward extension to AVX512

Future Work

- Support AVX512
- Isogeny-based cryptography

Source code at https://gitlab.uni.lu/APSIA/AVXECC

Thank you for your attention!