A Lightweight Implementation of NTRU Prime for the Post-Quantum Internet of Things

> Hao Cheng ¹ Daniel Dinu ² Johann Großschädl ¹ Peter B. Rønne ¹ Peter Y. A. Ryan ¹

> > ¹SnT and CSC, University of Luxembourg

²IPAS, Intel

WISTP 2019, 11-12 December 2019, Paris, France

Introduction

Overview of NTRU Prime (Streamlined NTRU Prime)

3 Optimizations for Arithmetic Operations

- Karatsuba-Based Polynomial Multiplication
- Multiplication Based on Product-Form Polynomials

4 Experimental Results

Introduction

Overview of NTRU Prime (Streamlined NTRU Prime)

Optimizations for Arithmetic Operations Karatsuba-Based Polynomial Multiplication

• Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion

Quantum Cryptanalysis

- Quantum Computing
 - Exploits quantum-mechanical phenomena (superposition and entanglement)
 - Can solve certain hard problems efficiently
- Shor's Algorithm¹
 - Integer Factorization, Discrete Logarithm in polynomial time
- Google publishes landmark quantum supremacy claim²

¹Peter W. Shor. "Algorithms for Quantum Computation: Discrete Logarithms and Factoring". In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS '94). IEEE Computer Society Press, 1994, pp. 124–134.

²F. Arute et al. "Quantum Supremacy using a Programmable Superconducting Processor". In: *Nature* 574 (2019), pp. 505–510.

NIST PQC Standardization³

Post-Quantum Cryptogra

f G+ ⊯

Post-Quantum Cryptography Standardization

The Round 2 candidates were announced January 30, 2019. NISTIR 8240, Status Report on the First Round of the NIST Post-Quantum Cryptography Standardization Process is now available.

- Solicit, evaluate and standardize **one or more** quantum-resistant PKC algorithms.
- 26 candidates in Round 2, 17 KEM/Encryption and 9 Signature schemes.
- NTRU Prime is the KEM candidate in Round 2.
- Performance (hardware + software) will play more of a role.

³https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization

Internet of Things

Figure: Internet of Things on the risel⁴

• IoT needs lightweight cryptosystems and protocols

⁴Ericsson Mobility Report (Jan 2019): https://www.ericsson.com/490532/assets/local/mobility-report/documents/2019/ericsson-mobility-report-world-economic-forum.pdf

Hao Cheng et al.

8-bit AVR Microcontrollers

Atmel

- 8-bit AVR Architecture
 - 8-bit RISC, 133 instructions
 - 32 general-purpose registers
 - ► Three 16-bit pointer registers: X, Y, and Z
 - ▶ Two-operand instruction format, e.g. "ADD RO, R1"
 - Most arithmetic/logic instructions take 1 cycle
 - Loads/Stores to/from RAM take 2 cycles
- ATmega1284 microcontroller: 16 KB RAM, 128 KB program memory
- One of the most constrained microcontrollers

Introduction

Overview of NTRU Prime (Streamlined NTRU Prime)

Optimizations for Arithmetic Operations

- Karatsuba-Based Polynomial Multiplication
- Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion

Parameters and Rings

- NTRU Prime (Key-establishment Algorithms)
 - Streamlined NTRU Prime: Variant of classic NTRU
 - NTRU LPRime: Similar structure with NewHope (based on RLWE)
- Parameters and Notations
 - ▶ p: the number of coefficients (must be prime), e.g. 653, 761 and 857
 - q: modulus of the ring (must be prime), e.g. 4621, 4591 and 5167
 - w: weight of the polynomial (the number of non-0 coefficients)
 - ▶ *small*: an element of *R* if all of its coefficients are in {-1, 0, 1}.
 - Short: the set of *small* weight-w elements of \mathcal{R} .
- Rings: (\mathbb{Z}/m) means the set of integers in (-m/2, m/2]
 - \mathcal{R} : ring $\mathbb{Z}[x]/(x^p-x-1)$
 - $\mathcal{R}/3$: ring $(\mathbb{Z}/3)[x]/(x^p x 1)$
 - \mathcal{R}/q : field $(\mathbb{Z}/q)[x]/(x^p x 1)$

Key Generation

Generate a uniform random small polynomial g(x) ∈ R that is invertible in R/3 (Repeat this step if g(x) is not qualified).

2 Compute
$$v(x) = 1/g(x)$$
 in $\mathcal{R}/3$.

- Senerate a uniform random polynomial $f(x) \in$ Short.
- Compute h(x) = g(x)/(3f(x)) in \mathcal{R}/q .
- **Output public key** h(x) and private key (f(x), v(x)).

Encapsulation

- **(**) Generate a uniform random polynomial $r(x) \in$ Short.
- ② Compute hr(x) = h(x) ★ r(x) ∈ R/q and then round each coefficient of hr(x) to the nearest multiple of 3, the generated polynomial is ciphertext c(x).
- Hash (SHA-512-based) r(x) together with c(x) to obtain session key k(x).

Decapsulation

- Compute $e(x) = (3f(x) \star c(x) \in \mathcal{R}/q) \mod 3$ = $3f(x) \star h(x) \star r(x) = 3f(x) \star (g(x)/3f(x)) \star r(x) = g(x) \star r(x).$
- ② Compute r'(x) = e(x) ★ v(x) ∈ R/3 $g(x) ★ r(x) ★ v(x) = g(x) ★ r(x) ★ g^{-1}(x) = r(x).$
- Solution Repeat the Step 2 of Encapsulation to generate c'(x) by r'(x).
- Output: Check whether c'(x) = c(x): if they are not equal, set r'(x) to be a new uniform random polynomial ∈ Short.
- Hash (SHA-512-based) r'(x) together with c(x) to obtain session key k(x).

Scheme Performance Analysis

Arithmetic Operations

- Multiplication between an element in \mathcal{R}/q and Short
 - * $hr(x) = h(x) * r(x) \in \mathcal{R}/q$ (Encap. step 2, Decap. step 3)
 - ★ $f(x) \star c(x) \in \mathcal{R}/q$ (Decap. step 1)
- Multiplication between two elements in $\mathcal{R}/3$

★
$$r'(x) = e(x) \star v(x) \in \mathcal{R}/3$$
 (Decap. step 1)

- Auxiliary Functions
 - SHA-512 hash function
 - ★ Optimization of SHA-512 is based on our previous work⁵, which sets the speed record of SHA-512 on 8-bit AVR platform
 - Encoding/Decoding
 - * Decoding the private key f(x) is constant-time

Our work has the constant running time for the security-critical part, that is resistant for timing attacks.

⁵Hao Cheng, Daniel Dinu, and Johann Großschädl. "Efficient Implementation of the SHA-512 Hash Function for 8-Bit AVR Microcontrollers". In: Innovative Security Solutions for Information Technology and Communications — SecITC 2018.

Introduction

Overview of NTRU Prime (Streamlined NTRU Prime)

Optimizations for Arithmetic Operations

- Karatsuba-Based Polynomial Multiplication
- Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion

Karatsuba-Based Polynomial Multiplication in $\mathcal{R}/3$ 4-Level Karatsuba Multiplication (mul_kara) in $\mathcal{R}/3$ for sntrup653

$$(a+bX)*(c+dX) = ac + (ad+bc)X + bdX^2$$
$$= ac + [(a-b)(d-c) + ac + bd]X + bdX^2$$

- 3 * mul_kara(*len* = 328) + polynomial additions/subtractions
- 3² * mul_kara(*len* = 164) + polynomial additions/subtractions
- **3** $3^3 * mul_kara(len = 82) + polynomial additions/subtractions$
- **3**⁴ * school_book(len = 41) + polynomial additions/subtractions
- Solution Final polynomial reduction (mod $x^p x 1$)

Karatsuba-Based Polynomial Multiplication in $\mathcal{R}/3$ Hybrid School Book Multiplication⁶ (d = 4) in $\mathcal{R}/3$ for sntrup653

Outer layer: product-scaning

$$R_i = \sum_{i=j+k} A_j * B_k$$

•
$$Z_i(z_0...z_6) +=$$

 $A_j(a_0...a_3) * B_k(b_0...b_3)$

• $R_i \leftarrow z_0, z_1, z_2, z_3$

•
$$z_0 \leftarrow z_4; z_1 \leftarrow z_5; z_2 \leftarrow z_6; z_3, z_4, z_5, z_6 \leftarrow 0$$

Inner layer: operand-scaning

•
$$z_0 += a_0 * b_0; z_1 += a_1 * b_0; z_2 += a_2 * b_0; z_3 += a_3 * b_0;$$

- $z_1 += a_0 * b_1; z_2 += a_1 * b_1;$ $z_3 += a_2 * b_1; z_4 += a_3 * b_1;$
- $z_2 += a_0 * b_2$; $z_3 += a_1 * b_2$; $z_4 += a_2 * b_2$; $z_5 += a_3 * b_2$;
- $z_3 += a_0 * b_3$; $z_4 += a_1 * b_3$; $z_5 += a_2 * b_3$; $z_6 += a_3 * b_3$;

Perform modulo-3 reduction at the end of each hybrid school book multiplication. Maximal intermediate value is 2 * 2 * 41 = 164 (8-bit).

⁶Nils Gura et al. "Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs". In: Cryptographic Hardware and Embedded Systems — CHES 2004.

Karatsuba-Based Polynomial Multiplication in $\mathcal{R}/3$

Modulo-3 Reduction

avr-gcc 4.8.2 for ATtiny45 (no hardware multiplier) \leftarrow __udivmodhi4

Cycles	Frequency	Percent (%)	Cycles	Frequency	Percent (%)
193	3	0.005	201	12244	18.683
194	45	0.069	202	7956	12.140
195	312	0.476	203	3825	5.836
196	1323	2.019	204	1323	2.019
197	3825	5.836	205	312	0.476
198	7956	12.140	206	45	0.069
199	12243	18.681	207	3	0.005
200	14121	21.547			

Figure: The execution time in cycles of the __udivmodhi4 function for all possible 16-bit unsigned integer inputs.

Hao Cheng et al.

Karatsuba-Based Polynomial Multiplication in $\mathcal{R}/3$ Modulo-3 Reduction

1	$b \leftarrow a \mod 255$					
	(lines 1 to 2)					

 $c \leftarrow b \mod 15$ (lines 3 to 11)

 $d \leftarrow c \mod 3$ (lines 12 to 21)

 Final subtraction of 3 (lines 22 to 25)

Algorithm 1 Constant-Time Modulo 3 Reduction for 16-bit Unsigned Integer							
Input: 1	16-bit unsig	gned integer $a = (HIBYTE, I$	LOB	(TE), v	vhere HIB	YTE represents the higher	
byte and	LOBYTE re	epresents the lower byte; Z	ERO	is init	tially 0		
Output: LOBYTE $\equiv a \mod 3$							
1: ADD	LOBYTE,	HIBYTE	14:	LSR	HIBYTE		
2: ADC	LOBYTE,	ZERO	15:	ANDI	LOBYTE,	0x03	

 3: MOV
 HIBYTE, LOBYTE

 4: SWAP
 HIBYTE

 5: ANDI
 LOBYTE, OxOF

 6: ANDI
 HIBYTE, OxOF

 7: ADD
 LOBYTE, HIBYTE

 8: MOV
 HIBYTE, LOBYTE

 9: SWAP
 HIBYTE

 10: ADD
 LOBYTE, HIBYTE

 11: ANDI
 LOBYTE, OxOF

HIBYTE

12: MOV 13: LSR HIBYTE, LOBYTE

LOBYTE, HIBYTE 16: ADD HIBYTE, LOBYTE 17: MOV 18: LSR HIBYTE 19: LSR HIBYTE 20: ANDI LOBYTE, 0x03 21: ADD LOBYTE, HIBYTE 22: SUBI LOBYTE, 0x03 SBC ZERO, ZERO 23:24: ANDI ZERO, 0x03 25: ADD LOBYTE, ZERO

26: CLR ZERO

Karatsuba-Based Polynomial Multiplication in \mathcal{R}/q 4-Level Karatsuba Multiplication (mulkara) in \mathcal{R}/q for sntrup653

Multiplication between an element in \mathcal{R}/q and Short:

•
$$hr(x) = h(x) \star r(x) \in \mathcal{R}/q$$
 (Encap. step 2, Decap. step 3)

•
$$f(x) \star c(x) \in \mathcal{R}/q$$
 (Decap. step 1)

- Padding p = 653 coefficients to 656 (a multiple of 2⁴) coefficients
 mul_kara(*len* = 656)
- 3 * mul_kara(len = 328) + polynomial additions/subtractions
- 3² * mul_kara(*len* = 164) + polynomial additions/subtractions
- § 3³ * mul_kara(*len* = 82) + polynomial additions/subtractions
- **§** $3^4 * \text{school}_\text{book}(len = 41) + \text{polynomial additions/subtractions}$
- Final polynomial reduction (mod $x^p x 1$)

Karatsuba-Based Polynomial Multiplication in \mathcal{R}/q Modulo-q Reduction for sntrup653 (q = 4621)

- Perform modulo-*q* reduction at the end of each school book multiplication
- Maximal intermediate value's length is 30-bit (4620 * 4620 * 41)
- 30-bit unsigned integer modulo-q reduction
 - **③** $tmp \leftarrow LUT1(b24...b29) + LUT2(b16...b23) + (b0...b15)$
 - 2 $r \leftarrow LUT3(t12...t16) + tmp\& 0xfff$

$$r \leftarrow r - q \cdot (r \ge q)$$

This polynomial multiplication in \mathcal{R}/q occupies 70% of the whole execution time.

Product-Form Polynomial

- Product-form polynomial is in the fashion of $f(x) = f_1(x) \star f_2(x) + f_3(x)$
- Widely used in the classic NTRU⁷
- Proved to have constant running time in cache-less devices⁸
- A few researchers appeal to use this technique in NTRU Prime
- Multiplication between an element in \mathcal{R}/q and Short:
 - ► $hr(x) = h(x) \star r(x) \in \mathcal{R}/q$ (Encap. step 2, Decap. step 3)
 - $f(x) \star c(x) \in \mathcal{R}/q$ (Decap. step 1)
- The weight of sparse polynomial $f_1(x)$, $f_2(x)$, $f_3(x)$ is (18, 16, 8)
- 7.7 times faster than Karatsuba-based multiplication, just costs less than 1 million clock cycles

⁸Hao Cheng et al. "A Lightweight Implementation of NTRUEncrypt for 8-bit AVR Microcontrollers". In: Proceedings of the 2nd NIST PQC Standardization Conference. Available online at http://csrc.nist.gov/Events/2019/second-pqc-standardization-conference. 2019.

⁷Jeffrey Hoffstein and Joseph H. Silverman. "Optimizations for NTRU". In: *Public-Key Cryptography and Computational Number Theory*. 2001, pp. 77–88.

Product-Form Polynomial Multiplication

```
for (j = 0; j < blen; j ++)
  if (b[j] == 0) {b[j+9] = 0x0000;} else {b[j+9] = 0xFFFF; b[j] = N-b[j];}
while (i < loop cnt) // loop cnt must be >= N and a multiple of 5
  sum0 = r[i ]; sum1 = r[i+1]; sum2 = r[i+2]; sum3 = r[i+3];
  sum4 = r[i+4]; sum0 += sumx; sumx = 0;
  for (i = 0: i < blen: i ++)
                                            sum1 += a[idx]&b[j+9]; sum0 += a[idx++];
   idx = b[i]:
   sum2 += a[idx]&b[j+9]; sum1 += a[idx++]; sum3 += a[idx]&b[j+9]; sum2 += a[idx++];
   sum4 += a[idx]&b[j+9]; sum3 += a[idx++]; sumx += a[idx]&b[j+9]; sum4 += a[idx++];
   if (idx >= N) { b[j] = idx-N; b[j+9] &= 0x0000; }
                 { b[i] = idx: b[i+9] &= 0xFFFF: }
  r[i++] = uint17_mod_q(sum0); r[i++] = uint17_mod_q(sum1); r[i++] = uint17_mod_q(sum2);
  r[i++] = uint17 mod g(sum3); r[i++] = uint17 mod g(sum4); sumx = uint17 mod g(sumx);
```

Please see details in our previous work⁸

 8 Hao Cheng et al. "A Lightweight Implementation of NTRUEncrypt for 8-bit AVR Microcontrollers". In: Proceedings of the 2nd NIST PQC Standardization Conference.

Hao Cheng et al.

Security Weakness of the Product-Form Polynomial $f(x) = f_1(x) \star f_2(x) + f_3(x) \mod (x^p - x - 1)$

- The distribution of $f_1(x) * f_2(x)$ is not uniform
- Could use a more complicated fashion to have the uniform distribution, but it will increase the time cost

Introduction

2 Overview of NTRU Prime (Streamlined NTRU Prime)

Optimizations for Arithmetic Operations
 Karatsuba-Based Polynomial Multiplication

Multiplication Based on Product-Form Polynomials

4 Experimental Results

Conclusion

Experiment Setup

- Tools: Atmel Studio v7.0
- Simulator: ATmega1284 simulator in Atmel Studio v7.0
- Compiler: 8-bit AVR GNU toolchain avr-gcc version 5.4.0
- Optimization Level: -02 option
- Source code:
 - Assembler (performance/security-critical operations + SHA-512 compression)
 - Others are written in C language

Performance Evaluation

Table: Execution time (in clock cycles) and code size (in bytes) of the main components of two Streamlined NTRU Prime implementations: Karatsuba multiplication based (KA) version and product-form (PF) based version

Operation	KA vers	sion	PF version		
operation	Time	Code	Time	Code	
Karatsuba Mul. (in $\mathcal{R}/q)$	5,691,117	2,230	5,691,117	2,230	
Product-Form Mul.	n/a	n/a	740,980	2,812	
Karatsuba Mul. (in $\mathcal{R}/3$)	1,277,675	1,510	1,277,675	1,510	
Encapsulation	8,276,001	8,694	8,276,001	8,694	
Decapsulation	15,838,978	11,478	10,869,879	14,370	
Encapsulation + Decapsulation	24,114,979	11,634	19,145,880	14,530	

Comparision

Table: Execution time (in clock cycles) of our NTRU Prime software, compared with other post-quantum key encapsulation schemes, RSA and ECC. All cryptosystems (except RSA) provide 128-bit security.

Implementation	Algorithm	Platform	Encap.	Decap.	
This work	NTRU Prime	ATmega1284	8,276,001	15,838,978	
This work (PF)	NTRU Prime	ATmega1284 8,276,001		10,869,879	
Kannwischer et al ⁹	NTRU Prime	Cortex M4 54,942,17		166,481,625	
Kannwischer et al ⁹	Frodo	Cortex M4	45,883,334	45,366,065	
Kannwischer et al ⁹	NewHope	Cortex M4	1,903,231	1,927,505	
Kannwischer et al ⁹	NTRU	Cortex M4	645,329	542,439	
Gura et al ¹⁰ *	RSA-1024	ATmega128	3,440,000	87,920,000	
Düll et al ¹¹	ECC-255	ATmega2560	27,800,794	23,900,397	
Cheng et al ⁸	NTRU	ATmega1281	847,973	1,051,871	

⁹Matthias J. Kannwischer et al. pgm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4. Cryptology ePrint Archive, Report 2019/844. Available for download at http://eprint.iacr.org. 2019.

¹⁰Gura et al., "Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs".

¹¹Michael Düll et al. "High-Speed Curve25519 on 8-bit, 16-bit and 32-bit Microcontrollers". In: *Designs, Codes and Cryptography* 77.2–3 (Dec. 2015), pp. 493–514.

Introduction

2 Overview of NTRU Prime (Streamlined NTRU Prime)

Optimizations for Arithmetic Operations
 Karatsuba-Based Polynomial Multiplication

• Multiplication Based on Product-Form Polynomials

4 Experimental Results

Conclusion

- The first optimized microcontroller implementation of NTRU Prime (Timing Attacks resistant)
- Optimization of multiplication that combines four levels of Karatsuba multiplication with the hybrid method at the lowest level
- Can not trust C compilers to generate constant-time code for the modulo-3 reduction, which generally raises security concerns
- Adapt the concept of product-form polynomials to NTRU Prime, and show its performance and security weakness
- NTRU Prime can be well optimized to run efficiently on small microcontrollers

Thanks for your attention!

Questions?