

RISC-V Instruction Set Extensions for
Multi-Precision Integer Arithmetic
A Case Study on Post-Quantum Key Exchange Using CSIDH-512

Hao Cheng1, Georgios Fotiadis1, Johann Großschädl1, Daniel Page2, Thinh Pham2, Peter Y. A. Ryan1

1University of Luxembourg
2University of Bristol

Multi-Precision Integer (MPI) arithmetic

• Many PK cryptosystems operate on MPI (hundreds/thousands bits)
• Classical: RSA, ECC
• Post-quantum: isogeny-based (e.g., CSIDH)
• Modular operations with MPI at the lowest level
• Performance-critical component

• MPI representation
• 𝑛-bit integer by 𝑤-bit digits/limbs, length 𝑙 = 𝑛/𝑤
• Full-radix: 𝑤 = 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑤𝑜𝑟𝑑 𝑠𝑖𝑧𝑒, digit
• Reduced-radix (redundant): 𝑤 < 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑤𝑜𝑟𝑑 𝑠𝑖𝑧𝑒, limb

RISC-V ISE for cryptography

• RISC-V
• Open Instruction Set Architecture (ISA) + open-source licenses
• No ALU status bits or flags (no carry flag!)
• Modular ISA design + optional Instruction Set Extensions (ISEs)

• Standard crypto (K) extension
• General-purpose instructions for, e.g., permutations and rotations
• Special-purpose instructions for some symmetric crypto algorithms, e.g., AES, SHA-2
• No instructions for MPI arithmetic

• Custom extensions for crypto
• No paper proposes an ISE approach for scalable MPI arithmetic

Contributions

• ISA-only implementations of MPI arithmetic on 64-bit RISC-V
• ISE designs for scalable MPI arithmetic

• 4 different implementations of CSIDH-512
• Representation

• Full-radix: 64-bit-per-digit
• Reduced-radix: 57-bit-per-limb (511/9 = 57)

• Implementation type
• ISA-only (pure software): only RV64GC
• ISE-supported (HW+SW hybrid): RV64GC + custom instructions

• Focus on prime-field 𝔽! arithmetic
• Mainly 𝔽!-multiplication (most performance-critical operation)
• Constant-time assembly implementations

CSIDH key exchange

• CSIDH
• Action of ideal class group on supersingular ECs

⋆: Cl ℤ −𝑝 ×𝑆 → 𝑆

• Action of ideal 𝔞 = 𝔩"
#!⋯𝔩$

#"on 𝐸%： 𝔞 ⋆ 𝐸%
• Compute isogeny 𝜙 of degree ℓ"

#!⋯ℓ$
#"

• Supersingular curves in Montgomery form
⁄𝐸% 𝔽!: 𝑦& = 𝑥' + 𝐴𝑥& + 𝑥

• Special prime 𝑝 = 4 I ℓ" ⋯ℓ$ − 1

• Case study: CSIDH-512 (NIST security level 1)
• Prime 𝑝 511 bits long

ISA-only: Montgomery multiplication

• High-level techniques
• Multiplication: operand-scanning, product-scanning, Karatsuba, etc.
• Integration: separated, coarsely-integrated, finely-integrated

• Low-level optimizations
• Main building block is MAC: 𝑆 ← 𝑆 + 𝑎(I 𝑏)
• Full-radix: 8 instr
• Reduced-radix: 6 instr + implicit overhead

• More MACs since limb-number > digit-number
• Alignment of the accumulator 𝑆

ISE-supported: Design of ISE

• Overview of ISE
• 2 integer multiply-add instructions + 1 instruction to assist carry propagation
• Full-radix: maddlu, maddhu, cadd
• Reduced-radix: madd57lu, madd57hu, sraiadd
• Execution latency: single clock cycle

• Design guideline
• Use general-purpose scalar register file to store operands
• No special-purpose (micro-)architectural state (e.g., cache, scratch-pad)
• Use R4-type for only MAC to save the encoding space

ISE-supported: Design of ISE (full-radix)

• Classic integer multiply-add designs
• e.g., ARM (mla, umlal, umaal), Intel AVX-512IFMA

𝑟𝑑 ← 𝑟𝑠1 ∗ 𝑟𝑠2 ≫ 𝑗 & 𝑚 + 𝑟𝑠3

• Derived design (maddhu) : 𝑟𝑑 ← 𝑟𝑠1 ∗ 𝑟𝑠2 ≫ 64 & 2!" − 1 + 𝑟𝑠3

• Need to propagate the carry-bit generated by maddlu

• Operations
• maddlu : 𝑟𝑑 ← 𝑟𝑠1 ∗ 𝑟𝑠2 + 𝑟𝑠3 & 2*+ − 1
• maddhu: 𝑟𝑑 ← 𝑟𝑠1 ∗ 𝑟𝑠2 + 𝑟𝑠3 ≫ 64 & 2*+ − 1
• cadd : 𝑟𝑑 ← 𝑟𝑠1 + 𝑟𝑠2 ≫ 64 + 𝑟𝑠3

ISE-supported: Design of ISE (reduced-radix)

• Operations
• madd57lu : 𝑟𝑑 ← 𝑟𝑠1 ∗ 𝑟𝑠2 & 2,- − 1 + 𝑟𝑠3

• madd57hu: 𝑟𝑑 ← 𝑟𝑠1 ∗ 𝑟𝑠2 ≫ 57 & 2*+ − 1 + 𝑟𝑠3

• sraiadd : 𝑟𝑑 ← 𝑟𝑠1 + EXTS 𝑟𝑠2 ≫ 𝑖𝑚𝑚

• Solved multiplier saturation problem
• Exists on AVX-512IFMA when 𝑟𝑠1 and 𝑟𝑠2 are not canonical (i.e., limbs > 52 bits)
• Intel AVX-512IFMA has 64-bit lanes but 52-bit multipliers

ISE-supported: Impact of ISE

• Full-radix
• MAC from 8 instr to now 4 instr

• Reduced-radix
• MAC from 6 instr to now 2 instr

• MAC accumulator automatically aligned

• Expect a higher performance gain from ISE

• sraiadd saves 1 instr for limb-level carry propagation in other operations

ISE-supported: HW implementation of ISE

R0
Instruction

cache
R1

Instruction
decode

Register
file

R2

XMUL

R3
Data
cache

R4

+4

BTB

Fetch Decode Execute Memory Commit

• RV64GC Rocket core (on Xilinx Artix-7 XC7A100TCSG324 FPGA)

• Modification of instruction decoder

• Extended multiplier (XMUL) extends the original pipelined multiplier
• Support 3rd input operand
• Implementation of custom instructions

Evaluation

• Hardware: area overhead
• Both full/reduced-radix ISEs about 10%

• Software: cycle count
• ISA-only

• Full-radix faster

• ISE-supported
• 𝔽! speed-up propagates well to group action

• Reduced-radix more suitable
• 1.71× speed-up compared to ISA-only baseline

Concluding remarks

• A case study with 511-bit operands on RV64
• Full-radix faster for ISA-only, even no carry flag
• Reduced-radix more suitable for ISE-supported
• Speed-up factor of 1.71
• CSIDH-512 still extremely costly

• Almost all previous MPI ISEs were for full-radix, could also look at reduced-radix

• Different results if different operand-lengths/base-ISAs/microarchitectures

• Future work: support for flexible reduced-radix

Thanks for your attention!

