
A Lightweight Implementation of NTRU Prime for the
Post-Quantum Internet of Things

Hao Cheng 1 Daniel Dinu 2 Johann Großschädl 1

Peter B. Rønne 1 Peter Y. A. Ryan 1

1SnT and CSC, University of Luxembourg

2IPAS, Intel

WISTP 2019, 11-12 December 2019, Paris, France

Hao Cheng et al. WISTP 2019 1 / 30



Outline

1 Introduction

2 Overview of NTRU Prime (Streamlined NTRU Prime)

3 Optimizations for Arithmetic Operations
Karatsuba-Based Polynomial Multiplication
Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion

Hao Cheng et al. WISTP 2019 2 / 30



Outline

1 Introduction

2 Overview of NTRU Prime (Streamlined NTRU Prime)

3 Optimizations for Arithmetic Operations
Karatsuba-Based Polynomial Multiplication
Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion

Hao Cheng et al. WISTP 2019 3 / 30



Quantum Cryptanalysis

Quantum Computing
I Exploits quantum-mechanical phenomena (superposition and

entanglement)
I Can solve certain hard problems efficiently

Shor’s Algorithm1

I Integer Factorization, Discrete Logarithm in polynomial time

Google publishes landmark quantum supremacy claim2

1Peter W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms and Factoring”. In: Proceedings of the 35th
Annual Symposium on Foundations of Computer Science (FOCS ’94). IEEE Computer Society Press, 1994, pp. 124–134.

2F. Arute et al. “Quantum Supremacy using a Programmable Superconducting Processor”. In: Nature 574 (2019),
pp. 505–510.

Hao Cheng et al. WISTP 2019 4 / 30



NIST PQC Standardization3

Solicit, evaluate and standardize one or
more quantum-resistant PKC algorithms.

26 candidates in Round 2, 17
KEM/Encryption and 9 Signature schemes.

NTRU Prime is the KEM candidate in
Round 2.

Performance (hardware + software) will
play more of a role.

3https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization

Hao Cheng et al. WISTP 2019 5 / 30



Internet of Things

Figure: Internet of Things on the riseI4

IoT needs lightweight cryptosystems and protocols

4Ericsson Mobility Report (Jan 2019): https://www.ericsson.com/490532/assets/local/mobility-
report/documents/2019/ericsson-mobility-report-world-economic-forum.pdf

Hao Cheng et al. WISTP 2019 6 / 30



8-bit AVR Microcontrollers

8-bit AVR Architecture
I 8-bit RISC, 133 instructions
I 32 general-purpose registers
I Three 16-bit pointer registers: X, Y, and Z
I Two-operand instruction format, e.g. “ADD R0, R1”
I Most arithmetic/logic instructions take 1 cycle
I Loads/Stores to/from RAM take 2 cycles

ATmega1284 microcontroller: 16 KB RAM, 128 KB program memory

One of the most constrained microcontrollers

Hao Cheng et al. WISTP 2019 7 / 30



Outline

1 Introduction

2 Overview of NTRU Prime (Streamlined NTRU Prime)

3 Optimizations for Arithmetic Operations
Karatsuba-Based Polynomial Multiplication
Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion

Hao Cheng et al. WISTP 2019 8 / 30



Parameters and Rings

NTRU Prime (Key-establishment Algorithms)
I Streamlined NTRU Prime: Variant of classic NTRU
I NTRU LPRime: Similar structure with NewHope (based on RLWE)

Parameters and Notations
I p: the number of coefficients (must be prime), e.g. 653, 761 and 857
I q: modulus of the ring (must be prime), e.g. 4621, 4591 and 5167
I w : weight of the polynomial (the number of non-0 coefficients)
I small : an element of R if all of its coefficients are in {-1, 0, 1}.
I Short: the set of small weight-w elements of R.

Rings: (Z/m) means the set of integers in (−m/2,m/2]
I R: ring Z[x ]/(xp − x − 1)
I R/3: ring (Z/3)[x ]/(xp − x − 1)
I R/q: field (Z/q)[x ]/(xp − x − 1)

Hao Cheng et al. WISTP 2019 9 / 30



Key Generation

1 Generate a uniform random small polynomial g(x) ∈ R that is
invertible in R/3 (Repeat this step if g(x) is not qualified).

2 Compute v(x) = 1/g(x) in R/3.

3 Generate a uniform random polynomial f (x) ∈ Short.

4 Compute h(x) = g(x)/(3f (x)) in R/q.

5 Output public key h(x) and private key (f (x), v(x)).

Hao Cheng et al. WISTP 2019 10 / 30



Encapsulation

1 Generate a uniform random polynomial r(x) ∈ Short.

2 Compute hr(x) = h(x) ? r(x) ∈ R/q and then round each
coefficient of hr(x) to the nearest multiple of 3, the generated
polynomial is ciphertext c(x).

3 Hash (SHA-512-based) r(x) together with c(x) to obtain session
key k(x).

Hao Cheng et al. WISTP 2019 11 / 30



Decapsulation

1 Compute e(x) = (3f (x) ? c(x) ∈ R/q) mod 3
= 3f (x) ? h(x) ? r(x) = 3f (x) ? (g(x)/3f (x)) ? r(x) = g(x) ? r(x).

2 Compute r ′(x) = e(x) ? v(x) ∈ R/3
g(x) ? r(x) ? v(x) = g(x) ? r(x) ? g−1(x) = r(x).

3 Repeat the Step 2 of Encapsulation to generate c ′(x) by r ′(x).

4 Check whether c ′(x) = c(x): if they are not equal, set r ′(x) to be a
new uniform random polynomial ∈ Short.

5 Hash (SHA-512-based) r ′(x) together with c(x) to obtain session
key k(x).

Hao Cheng et al. WISTP 2019 12 / 30



Scheme Performance Analysis

Arithmetic Operations
I Multiplication between an element in R/q and Short

F hr(x) = h(x) ? r(x) ∈ R/q (Encap. step 2, Decap. step 3)
F f (x) ? c(x) ∈ R/q (Decap. step 1)

I Multiplication between two elements in R/3
F r ′(x) = e(x) ? v(x) ∈ R/3 (Decap. step 1)

Auxiliary Functions
I SHA-512 hash function

F Optimization of SHA-512 is based on our previous work5, which sets
the speed record of SHA-512 on 8-bit AVR platform

I Encoding/Decoding
F Decoding the private key f (x) is constant-time

Our work has the constant running time for the security-critical part, that
is resistant for timing attacks.

5Hao Cheng, Daniel Dinu, and Johann Großschädl. “Efficient Implementation of the SHA-512 Hash Function for 8-Bit AVR
Microcontrollers”. In: Innovative Security Solutions for Information Technology and Communications — SecITC 2018.

Hao Cheng et al. WISTP 2019 13 / 30



Outline

1 Introduction

2 Overview of NTRU Prime (Streamlined NTRU Prime)

3 Optimizations for Arithmetic Operations
Karatsuba-Based Polynomial Multiplication
Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion

Hao Cheng et al. WISTP 2019 14 / 30



Karatsuba-Based Polynomial Multiplication in R/3
4-Level Karatsuba Multiplication (mul kara) in R/3 for sntrup653

(a+ bX ) ∗ (c + dX ) = ac + (ad + bc)X + bdX 2

= ac + [(a− b)(d − c) + ac + bd ]X + bdX 2

1 Padding p = 653 coefficients to 656 (a multiple of 24) coeffcients

2 mul kara(len = 656)

3 3 * mul kara(len = 328) + polynomial additions/subtractions

4 32 * mul kara(len = 164) + polynomial additions/subtractions

5 33 * mul kara(len = 82) + polynomial additions/subtractions

6 34 * school book(len = 41) + polynomial additions/subtractions

7 Final polynomial reduction (mod xp − x − 1)

Hao Cheng et al. WISTP 2019 15 / 30



Karatsuba-Based Polynomial Multiplication in R/3
Hybrid School Book Multiplication6 (d = 4) in R/3 for sntrup653

Outer layer: product–scaning

Ri = ∑
i=j+k

Aj ∗ Bk

Zi (z0 . . . z6) +=
Aj (a0 . . . a3) ∗ Bk(b0 . . . b3)

Ri ← z0, z1, z2, z3

z0 ← z4; z1 ← z5; z2 ← z6;
z3, z4, z5, z6 ← 0

Inner layer: operand–scaning

z0 += a0 ∗ b0; z1 += a1 ∗ b0;
z2 += a2 ∗ b0; z3 += a3 ∗ b0;

z1 += a0 ∗ b1; z2 += a1 ∗ b1;
z3 += a2 ∗ b1; z4 += a3 ∗ b1;

z2 += a0 ∗ b2; z3 += a1 ∗ b2;
z4 += a2 ∗ b2; z5 += a3 ∗ b2;

z3 += a0 ∗ b3; z4 += a1 ∗ b3;
z5 += a2 ∗ b3; z6 += a3 ∗ b3;

Perform modulo-3 reduction at the end of each hybrid school book
multiplication. Maximal intermediate value is 2 ∗ 2 ∗ 41 = 164 (8-bit).

6Nils Gura et al. “Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs”. In: Cryptographic Hardware and
Embedded Systems — CHES 2004.

Hao Cheng et al. WISTP 2019 16 / 30



Karatsuba-Based Polynomial Multiplication in R/3
Modulo-3 Reduction

avr-gcc 4.8.2 for ATtiny45 (no hardware multiplier) ← udivmodhi4

Cycles Frequency Percent (%) Cycles Frequency Percent (%)
193 3 0.005 201 12244 18.683
194 45 0.069 202 7956 12.140
195 312 0.476 203 3825 5.836
196 1323 2.019 204 1323 2.019
197 3825 5.836 205 312 0.476
198 7956 12.140 206 45 0.069
199 12243 18.681 207 3 0.005
200 14121 21.547

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
Execution time

0

2

4

Fr
eq

ue
nc

y 
(lo

g 
sc

al
e)

Figure: The execution time in cycles of the udivmodhi4 function for all possible 16-bit
unsigned integer inputs.

Hao Cheng et al. WISTP 2019 17 / 30



Karatsuba-Based Polynomial Multiplication in R/3
Modulo-3 Reduction

1 b ← a mod 255
(lines 1 to 2)

2 c ← b mod 15
(lines 3 to 11)

3 d ← c mod 3
(lines 12 to 21)

4 Final subtraction
of 3
(lines 22 to 25)

Hao Cheng et al. WISTP 2019 18 / 30



Karatsuba-Based Polynomial Multiplication in R/q
4-Level Karatsuba Multiplication (mul kara) in R/q for sntrup653

Multiplication between an element in R/q and Short:

hr(x) = h(x) ? r(x) ∈ R/q (Encap. step 2, Decap. step 3)

f (x) ? c(x) ∈ R/q (Decap. step 1)

1 Padding p = 653 coefficients to 656 (a multiple of 24) coeffcients

2 mul kara(len = 656)

3 3 * mul kara(len = 328) + polynomial additions/subtractions

4 32 * mul kara(len = 164) + polynomial additions/subtractions

5 33 * mul kara(len = 82) + polynomial additions/subtractions

6 34 * school book(len = 41) + polynomial additions/subtractions

7 Final polynomial reduction (mod xp − x − 1)

Hao Cheng et al. WISTP 2019 19 / 30



Karatsuba-Based Polynomial Multiplication in R/q
Modulo-q Reduction for sntrup653 (q = 4621)

Perform modulo-q reduction at the end of each school book
multiplication

Maximal intermediate value’s length is 30-bit (4620 ∗ 4620 ∗ 41)

30-bit unsigned integer modulo-q reduction
1 tmp ← LUT1(b24. . . b29) + LUT2(b16. . . b23) + (b0. . . b15)
2 r ← LUT3(t12. . . t16) + tmp& 0xfff
3 r ← r − q · (r > q)

This polynomial multiplication in R/q occupies 70% of the whole
execution time.

Hao Cheng et al. WISTP 2019 20 / 30



Product-Form Polynomial

Product-form polynomial is in the fashion of
f (x) = f1(x) ? f2(x) + f3(x)

Widely used in the classic NTRU7

Proved to have constant running time in cache-less devices8

A few researchers appeal to use this technique in NTRU Prime

Multiplication between an element in R/q and Short:
I hr(x) = h(x) ? r(x) ∈ R/q (Encap. step 2, Decap. step 3)
I f (x) ? c(x) ∈ R/q (Decap. step 1)

The weight of sparse polynomial f1(x), f2(x), f3(x) is (18, 16, 8)

7.7 times faster than Karatsuba-based multiplication, just costs less
than 1 million clock cycles

7Jeffrey Hoffstein and Joseph H. Silverman. “Optimizations for NTRU”. In: Public-Key Cryptography and Computational
Number Theory. 2001, pp. 77–88.

8Hao Cheng et al. “A Lightweight Implementation of NTRUEncrypt for 8-bit AVR Microcontrollers”. In: Proceedings of the
2nd NIST PQC Standardization Conference. Available online at
http://csrc.nist.gov/Events/2019/second-pqc-standardization-conference. 2019.

Hao Cheng et al. WISTP 2019 21 / 30

http://csrc.nist.gov/Events/2019/second-pqc-standardization-conference


Product-Form Polynomial Multiplication

Please see details in our previous work8

8Hao Cheng et al. “A Lightweight Implementation of NTRUEncrypt for 8-bit AVR Microcontrollers”. In: Proceedings of the
2nd NIST PQC Standardization Conference.

Hao Cheng et al. WISTP 2019 22 / 30



Security Weakness of the Product-Form Polynomial
f (x) = f1(x) ? f2(x) + f3(x) mod (xp − x − 1)

The distribution of f1(x) ∗ f2(x) is not uniform

Could use a more complicated fashion to have the uniform
distribution, but it will increase the time cost

Hao Cheng et al. WISTP 2019 23 / 30



Outline

1 Introduction

2 Overview of NTRU Prime (Streamlined NTRU Prime)

3 Optimizations for Arithmetic Operations
Karatsuba-Based Polynomial Multiplication
Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion

Hao Cheng et al. WISTP 2019 24 / 30



Experiment Setup

Tools: Atmel Studio v7.0

Simulator: ATmega1284 simulator in Atmel Studio v7.0

Compiler: 8-bit AVR GNU toolchain avr-gcc version 5.4.0

Optimization Level: -O2 option

Source code:
I Assembler (performance/security-critical operations + SHA-512

compression)
I Others are written in C language

Hao Cheng et al. WISTP 2019 25 / 30



Performance Evaluation

Table: Execution time (in clock cycles) and code size (in bytes) of the main components of two
Streamlined NTRU Prime implementations: Karatsuba multiplication based (KA) version and
product-form (PF) based version

KA version PF version
Operation

Time Code Time Code

Karatsuba Mul. (in R/q) 5,691,117 2,230 5,691,117 2,230
Product-Form Mul. n/a n/a 740,980 2,812

Karatsuba Mul. (in R/3) 1,277,675 1,510 1,277,675 1,510

Encapsulation 8,276,001 8,694 8,276,001 8,694
Decapsulation 15,838,978 11,478 10,869,879 14,370

Encapsulation + Decapsulation 24,114,979 11,634 19,145,880 14,530

Hao Cheng et al. WISTP 2019 26 / 30



Comparision

Table: Execution time (in clock cycles) of our NTRU Prime software, compared with other
post-quantum key encapsulation schemes, RSA and ECC. All cryptosystems (except RSA)
provide 128-bit security.

Implementation Algorithm Platform Encap. Decap.

This work NTRU Prime ATmega1284 8,276,001 15,838,978

This work (PF) NTRU Prime ATmega1284 8,276,001 10,869,879

Kannwischer et al9 NTRU Prime Cortex M4 54,942,173 166,481,625

Kannwischer et al9 Frodo Cortex M4 45,883,334 45,366,065

Kannwischer et al9 NewHope Cortex M4 1,903,231 1,927,505

Kannwischer et al9 NTRU Cortex M4 645,329 542,439

Gura et al10 ∗ RSA-1024 ATmega128 3,440,000 87,920,000

Düll et al11 ECC-255 ATmega2560 27,800,794 23,900,397

Cheng et al 8 NTRU ATmega1281 847,973 1,051,871

9Matthias J. Kannwischer et al. pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4. Cryptology ePrint
Archive, Report 2019/844. Available for download at http://eprint.iacr.org. 2019.

10Gura et al., “Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs”.

11Michael Düll et al. “High-Speed Curve25519 on 8-bit, 16-bit and 32-bit Microcontrollers”. In: Designs, Codes and
Cryptography 77.2–3 (Dec. 2015), pp. 493–514.

Hao Cheng et al. WISTP 2019 27 / 30

http://eprint.iacr.org


Outline

1 Introduction

2 Overview of NTRU Prime (Streamlined NTRU Prime)

3 Optimizations for Arithmetic Operations
Karatsuba-Based Polynomial Multiplication
Multiplication Based on Product-Form Polynomials

4 Experimental Results

5 Conclusion

Hao Cheng et al. WISTP 2019 28 / 30



Conclusion

The first optimized microcontroller implementation of NTRU Prime
(Timing Attacks resistant)

Optimization of multiplication that combines four levels of Karatsuba
multiplication with the hybrid method at the lowest level

Can not trust C compilers to generate constant-time code for the
modulo-3 reduction, which generally raises security concerns

Adapt the concept of product-form polynomials to NTRU Prime, and
show its performance and security weakness

NTRU Prime can be well optimized to run efficiently on small
microcontrollers

Hao Cheng et al. WISTP 2019 29 / 30



Thanks for your attention!

Questions?

Hao Cheng et al. WISTP 2019 30 / 30


	Introduction
	Overview of NTRU Prime (Streamlined NTRU Prime)
	Optimizations for Arithmetic Operations
	Karatsuba-Based Polynomial Multiplication
	Multiplication Based on Product-Form Polynomials

	Experimental Results
	Conclusion

